skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chepizhko, Oleksandr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent years have seen a tremendous growth of interest in understanding the role that the adaptive immune system could play in interdicting tumor progression. In this context, it has been shown that the density of adaptive immune cells inside a solid tumor serves as a favorable prognostic marker across different types of cancer. The exact mechanisms underlying the degree of immune cell infiltration is largely unknown. Here, we quantify the temporal dynamics of the density profile of activated immune cells around a solid tumor spheroid. We propose a computational model incorporating immune cells with active, persistent movement and a proliferation rate that depends on the presence of cancer cells, and show that the model able to reproduce semi-quantitatively the experimentally measured infiltration profile. Studying the density distribution of immune cells inside a solid tumor can help us better understand immune trafficking in the tumor micro-environment, hopefully leading towards novel immunotherapeutic strategies. 
    more » « less
  2. null (Ed.)
    The emergence of orientational order plays a central role in active matter theory and is deeply based in the study of active systems with a velocity alignment mechanism, whose most prominent example is the so-called Vicsek model. Such active systems have been used to describe bird flocks, bacterial swarms, and active colloidal systems, among many other examples. Under the assumption that the large-scale properties of these models remain unchanged as long as the polar symmetry of the interactions is not affected, implementations have been performed using, out of convenience, either additive or non-additive interactions; the latter are found for instance in the original formulation of the Vicsek model. Here, we perform a careful analysis of active systems with velocity alignment, comparing additive and non-additive interactions, and show that the macroscopic properties of these active systems are fundamentally different. Our results call into question our current understanding of the onset of order in active systems. 
    more » « less